TableCloth: Complexity From Layers of Simplicity

The TableCloth installation by Ball-Nogues Studio at the Schoenberg Hall courtyard in the UCLA Music Department is a functional installation. It is part art, part architecture, part structure and part furniture. The complexity of this project emerges from the layering of design decisions taken in response to the different functions that the installation fulfils. The installation is meant to enhance the usefulness of the courtyard to the members of the Music Department. It was commissioned as a temporary installation on the UCLA campus for only a part of the year.

Starting with the courtyard as a space a simple ‘drape-like’ surface hanging from one of the walls was proposed. This drape would embellish the building in the same way that a table cloth embellishes a table and marks is as a place for congregation. This drape surface was designed taking into account the circulation around the courtyard ‘relaxed’ by structural analysis so as to ensure that it draped the building smoothly.

The Relaxed Drape Surface in the Courtyard

A strategy was then devised to subdivide this drape surface into tectonic components that were differentiated based on their position on the surface.

The first step of the subdivision process was to populate the surface with points. The points were to act as seeds for the tectonic components. The density of the points was related to the varying curvature of the surface – the greater the curvature the greater the point density. This would enable the components (to be made of flat materials) to efficiently negotiate the curvature of the drape.  This was achieved using a script similar to one posted on this blog earlier.

Points Placed on the Surface Based on Surface Curvature

The points thus placed were used as the input for a Delaunay triangulation mesh which divided the curved drape surface into planar triangles which determine the orientation and periphery of each planar tectonic component. The density distribution of the points determined the density of the Delaunay mesh. A script for Delaunay triangulation was previously posted on this blog.

Delaunay Triangulation Using Surface Points

The temporary nature of the installation was in conflict with the durability and permanence of the materials and resources that would be required of an outdoor installation of the size of the drape surface. It was thus decided to give the individual tectonic components a functional life beyond that of the installation. The design of the components therefore became an exercise in cross-manufacturing where the same physical artefact performed the dual functions of a tectonic component when part of the installation, and a table/stool when independent. The triangular geometry of the Delaunay mesh dictated a three legged object but the function of a table/stool required minimizing sharp corners. Therefore  a Grasshopper definition was used to create irregular ‘ovals’ within each triangle of the Delaunay mesh which were to become the seats of the stools/tables making up the TableCloth.

Irregular 'Ovals' Created From the Delaunay Triangles

The edges of this field of tables/stools were modulated to allow it to act as an amphitheatre with audience seating, a performance area and a visual/acoustic backdrop. Further interstitial components and detailing were added based on structural and constructional considerations to create a structurally, visually and functionally complex installation.

The Complex Installation Incorporating Layers of Simple Design Decisions


One thought on “TableCloth: Complexity From Layers of Simplicity

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s