Weaving and Linear Measurement in Digitally Guided Construction

Measuring the length of a straight line in the physical world is to test the geometric congruency of two one-dimensional objects – an object of standardized length against an object of unknown length. All one-dimensional objects share the property of similarity and can therefore be “placed against each other” as physical objects (strictly speaking there are no “real” one-dimensional objects but this statement will still apply to the one-dimensional edges of higher-dimensional objects). To make two one-dimensional objects congruent requires breaking/cutting the longer of the two at a single point or stretching the shorter of the two along a single direction.

While all this may seem painfully obvious, the uniqueness of the situation is highlighted when you think about how hard it is to make two non-similar objects of higher dimensions congruent or similar. For example, here is a device for replicating three-dimensional sculptures with the ability to change the size of the reproduction. (For more information about this device you can read this article). Now compare this device to using a ruler and pair of scissors to make two pieces of string the same length.

Source: http://www.thecarvingpath.net/forum/index.php?showtopic=1278

George Stiny shows how a boundary function is able to map algebras of different dimensions to each other (Shape: Talking About Seeing and Doing, p. 98).  In terms of construction, a boundary function can provide ‘templates’ or ‘jigs’ or ‘frameworks’ or ‘guides’ (depending on your method of construction) for objects of a higher dimension using objects of lower dimensions. To cite an example of a project I was personally involved in, the form-work of the Santa Monica Cradle project is an example of two-dimensional plywood ribs being used as a framework for creating a complex, curved, three-dimensional surface from strips of flexible ‘luaun’ ply. In fact, most approaches to constructing an architectural surface involves some kind of underlying linear framework.

The skinning of the plywood framework with strips of flexible luaun.
A Surface
A Divided Surface
The Boundaries Of The Divisions Form A Framework

If a complex three-dimensional shape can be built using a ‘framework’ of linear shapes, then it can be constructed through simple measurements of length. The most basic way to go from a one-dimensional boundary to a two-dimensional shape through linear measurement alone is through triangles. This method has been used since the time of ancient Egypt where it was used to measure the (two-dimensional) area of land holdings using (one-dimensional) rope as a measuring device.

The ‘Suspension’ series of installations by Ball-Nogues Studio (some of which I was fortunate to be a part of) consist of a series of threads cut to specific lengths, coloured at specific intervals and hung from specific points to form a series of catenaries. When seen together, the strings form complex, multi-coloured, three-dimensional “clouds” suspended in mid air.

“Suspensions: Feathered Edge by Ball-Nogues Studio”. MoCA PDC, Los Angeles, 2007.

A sturdier and more ancient way of combining linear elements into objects of higher dimensions is weaving. The weaving of cloth goes from one-dimensional thread to a two-dimensional cloth, and the weaving of baskets goes from one-dimension strips (of cane, bamboo, rattan or other materials) to a three-dimensional surface. Kenneth Snelson shows how a tensegrity structure can be thought of as a three-dimensional polyhedron woven out of linear elements.

A surface woven from digitally derived linear fabrication data.
The first bamboo Parametric Pavilion. Kamath Design Studio, New Delhi, 2010.

The process of weaving is therefore an ideal candidate for a manual construction process involving only linear measurement that can be used to construct a digitally designed, complex curved surface. I had woven a quick model based on this premise some months ago using linear fabrication data obtained by running this script on a test surface. After the successful construction of the first bamboo Parametric Pavilion I am now attempting the design and construction of a more complex woven bamboo roof structure for a 150 square meter guest house building. This project will be a test case for implementing the idea of using digitally derived linear construction data for the manual weaving of a complex curved surface.

Advertisements

3 thoughts on “Weaving and Linear Measurement in Digitally Guided Construction

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s