Ghosla: A Curvature Optimized Woven Bamboocrete Roof

“Ghosla” (meaning “nest” in Hindi) is a bamboocrete roof designed by Kamath Design Studio for a 150 square meter guest house unit at the Gnostic Centre in New Delhi, India.

Curvature optimized weaving: Surface paths with minimum cumulative curvature compared to a UV transformed hexagonal grid

The shape of the roof comes from a structural form-finding process dictated by the floor plan of the building and the resulting positions of the supporting columns. A RhinoScript was used to find optimized paths for woven members on this surface. The paths found using the script are those with minimum cumulative curvature passing through a given set of points on the surface. This enables the bamboo members used in the weaving to have as large a cross-sectional diameter as possible (and thus as high a load bearing capacity as possible) since they do not need to bend much and need not be extremely flexible. The advantage of using these optimized paths can be seen when comparing them (extreme right, above) to the simple UV transformed hexagonal grid (second from the right, above). The simple UV transformed grid has member paths with significantly higher curvature which will require more flexible (and thus thinner and weaker) bamboo members for its construction.

Stepping back in the design process, the design-computational reason for constructing this roof by weaving bamboo came from the need to devise a work-flow and construction methodology that would enable the construction of a digitally designed complex curved surface (the form-found roof shape) by simple manual construction techniques in a non-industrial setting. Weaving is an ancient process that is in the technological repertoire of most cultures. What makes weaving especially suited to the construction of curved surfaces is the fact that it can use linear, one-dimensional elements to produce a surface curving in three-dimensions and requires only linear measurements during construction. I have discussed the details of this in my earlier post on Weaving and Linear Measurement in Digitally Guided Construction.

The success of this digital-to-physical work-flow can be seen in the 1:25 scale model of the roof that was constructed by carpenter Ram Lakhan with the guidance of Inderjeet Singh Seera of Kamath Design Studio using linear dimensional information obtained from a 3D computer model of the woven roof. Here are some photographs of the model just before completion –

1:25 Scale Model of the Woven Bamboo Roof Under Construction
1:25 Scale Model of the Woven Bamboo Roof Under Construction

 

1:25 Scale Model of the Woven Bamboo Roof Under Construction

While there is no doubt that there will be numerous challenges that will have to be overcome during full-scale construction, the progress on this project so far shows the ability of weaving to be used for the construction of complex curved surfaces by manual means using linear dimensional information.

The bamboocrete roof that this woven structure will support will be similar to earlier bamboocrete roofs designed by Kamath Design Studio. The woven bamboo structure of the “Ghosla” roof will replace the steel and eucalyptus log trusses used to support these earlier roofs.

Exterior View of the Bamboocrete Roof at the Kamath Residence
Interior View of the Bamboocrete Roof at the Kamath Residence
Advertisements

3 thoughts on “Ghosla: A Curvature Optimized Woven Bamboocrete Roof

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s